
The Commandments of COTS:
Still in Search of the Promised Land

David J. Carney, Patricia A. Oberndorf
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

{djc, po}@sei.cmu.edu

1. Introduction

Within the past few years, organizations that acquire software-intensive systems have undergone a
remarkable shift in emphasis toward use of existing commercial products. This shift is especially
noticeable in the U.S. Government procurements, particularly those of the Department of Defense
(DoD). Many current Requests for Proposals (RFPs) being issued by the Government now include
a mandate concerning the amount of “COTS” (commercial off-the-shelf) products that must be
included. Supporting this are statements from senior officials that indicate a policy for using
COTS products as much as possible is intended to be Department- or even Government-wide.

This interest in COTS products requires examination both in terms of its causes and effects, and
also in terms of its benefits and liabilities. In this paper we offer some observations on all of these,
and voice some specific concerns and criticisms. We stress that our observations are essentially
cautionary, not condemnatory: it is obvious to almost any observer that the huge growth in soft-
ware costs will continue, not abate, and that appropriate use of commercially-available products is
one of the remedies that might enable us to acquire needed capabilities in a cost-effective manner.
Where use of an existing component is both possible and feasible, it is no longer acceptable for
the Government to specify, build, and maintain a comparable product; clearly an existing com-
mercial solution is called for.

But on the other hand, we also notice many disturbing signals abroad in the land. Many state-
ments, whether high-level policies or otherwise, suggest a reluctance to admit that as with any-
thing else, there can be a nontrivial downside to using COTS products. Like any solution to any
problem, there are drawbacks as well as benefits: while it may not be readily apparent to all
observers as yet, many unhappy trade-offs exist when embracing a commercial basis for the Gov-
ernment’s software systems.

The critical point is that using COTS components in any given circumstance might help, but is not
guaranteed to, and such use may even cause greater problems. Acquisition managers must under-
stand that use of a COTS component may be a reasonable solution, but that its use should be the
product of analysis, reasoning, and engineering decisions, not the result of jumping on the latest
bandwagon. Hence we express, using a somewhat whimsical structuring device, some specific
items to consider when planning to use COTS products. Unlike the Commandments of the Exo-
dus, our commandments are not graven in stone. But they are surely needed: just as was true in
that far-off time, we see abundant evidence that people are still willing to worship before false
idols.



2. The Commandments

We suggest ten “commandments” to consider. We state them briefly here, and expand on each
later in this paper

I. One more time: Do not believe in Silver Bullets

“COTS is the answer” is the latest in a sequence of Silver Bullet slogans, each of which was expected
to produce an immediate and painless solution to a perceived technology crisis. Brooks really was
right: Silver Bullets don’t work, and often make things worse.

II. Use the term precisely (and demand like behavior from others)

The term “COTS” is currently a widely-used buzzword with many possible interpretations. In spite of a
precise definition in the Federal Acquisition Regulations, it is still possible for significant misunder-
standings to arise between Government and vendors.

III.Understand the impact of COTS products on the requirements and selection process

Use of COTS products has significant impact on both the specification of requirements and the evalua-
tion of proposals, an impact that must be understood early in the acquisition process.

IV. Understand their impact on the integration process

Integration of COTS components is no simpler than integration of proprietary components, and may in
fact be more difficult.

V. Understand their impact on the testing process

Testing and validation of COTS-based systems is a radically different process than testing and validat-
ing proprietary systems

VI. Realize that a COTS approach makes a system dependent on the COTS vendors

Vendor support for the commercial components in a COTS-based systems is critical to the success of
that system; many unforeseen problems can accompany a commercial system after deployment.

VII.Realize that maintenance is not free

The presence of COTS components does not necessarily mean low maintenance costs; on the contrary,
their presence can cause complex problems in system upgrade and system maintenance. These prob-
lems may well exceed the maintenance cost of a home-grown system.

VIII.You are not absolved of the need to engineer the system well

A system that is composed of components from diverse sources and suited to your particular needs will
not come together by itself.

IX. Just “doing COTS” is not an automatic cost-saver

It may be observed that the availability of off-the-shelf parts has brought down the costs in other
industries; but in software development, there are offsetting costs to consider and manage.

X. Just “doing COTS” must be part of a large-scale paradigm shift

A change in mindset is as important as any change in technology when composing systems from parts
created by others (as opposed to designing and building everything from scratch).



I. One more time: Do not believe in Silver Bullets.

There seems to be universal agreement throughout the software community that “there is no silver
bullet,” and that the lessons found in Brooks’ famous paper1 have been learned. Yet the silver bul-
let mentality seems to reappear in the Government with remarkable frequency. We note a long
series of initiatives (Ada, CASE tools, SEEs, CIM, and reuse being the most prominent) that
placed all-encompassing hopes on particular technologies to answer impending crises. The results
seldom matched the expectations. Nor were these technologies in themselves necessarily failures
(e.g., Ada’s inability to find broad success was not, we feel, due to any inherent technical weak-
ness in the language itself; many CASE tools are indeed valuable and useful products).

Instead, we suggest that the evidence shows that the complex technological problems found in
software-intensive systems demand complex solutions, not simple ones. While the desire for a
simple and uncluttered remedy is understandable, we suggest that this desire is unlikely to be sat-
isfied. Thus, we assert, it is the single-mindedness of the response, not whatever technology is the
silver bullet at hand, that is inherently flawed. A technological crisis, including all of the “soft-
ware crises” that have come and gone, is generally the product of many factors. While there may
be one overriding factor at the base of the problem, there are likely to be many other contributing
factors that participate and catalyze; serious technological difficulties tend to result from the inter-
action of factors rather than from any single one alone. Thus, an approach that chooses a single
factor, isolates it, and then hopes for a universally beneficial outcome will usually have little suc-
cess.

We perceive that the current movement toward COTS products is rapidly taking on such a tone.
The growth in the cost and complexity of software systems is a difficult problem, but to focus only
on a commercially-based solution is to misunderstand the problem’s difficulty. To mandatea pri-
ori that some arbitrary percentage of any system should be COTS products will almost certainly
not have the desired effect. Instead, the real need is for:
• thoughtful policies about the types of systems that will or will not benefit from a commercial

approach,
• guidelines about the hard trade-offs made when incorporating COTS products into systems,
• handbooks describing recommended processes and procedures about integrating multiple

commercial products,
• upgrade strategies covering multiple vendors,
• recommendations about whennot to use a commercial approach.

Further, these items must be recognized as only part of the solution, and must be accompanied by
similar considerations of the complementary problems -- system distribution, interface standards,
legacy system reengineering, and so forth -- with which a COTS-based approach must be inte-
grated.

In short, it is necessary that using COTS products be seen as one potential strategy in a complex
solution space, no more and no less. A simplistic mandate to “use COTS as much as you can”
solves little and, as will be seen below, may well make matters much worse.

1. Brooks, Jr., F. P. “No Silver Bullet - Essence and Accidents of Software Engineering,” Computer, 20(4),
April 1987, 10-19



II. Use the term precisely (and demand like behavior from others)

The U.S. Senate Bill 1597 provides a definition of both “commercial item” and “nondevelopmen-
tal item.” The thrust of these definitions is to clarify the Government’s understanding of what it
means to be a “commercial product.”2 While these definitions are useful, they leave some issues
unresolved. For instance, they specify that a product must be either “sold, leased, or licensed to
the general public, offered for sale, lease, or license to the general public or be made available
...within a reasonable period.” But what is “a reasonable period”? And in a different vein, is there
any sense in which the product must have been advertised? These questions are not unimportant,
since they can have major importance when evaluating proposals for source selection.

A further ambiguity stems from the unfortunate parallelism with the terms “GOTS” (Government
off-the-shelf) and “MOTS”(Modified off-the-shelf). Both are thought of as related to, and some-
times even considered subsets of COTS. In the former case, a GOTS component is one developed
by and owned by the Government (generally including the source code). In the latter case, a
MOTS component is one in which some alteration has been made to an existing component or
product for the purpose of a specific acquisition. However, to consider all of these as roughly syn-
onymous is dangerous. For instance, given that one prime motivation for choosing COTS is to
lower maintenance costs, then the term should apply only when source code is unavailable and
maintenance impossible (except by its vendor). In that sense, “MOTS” is fundamentally different
from COTS, since any code that is modified in any way for a specific acquisition will of necessity
need ongoing maintenance for the life of the acquired system.

Aside from the precise nuance of meaning, there is also the issue of scope: what size of compo-
nent do we include when we say “COTS”? Is it meant to be all-inclusive, covering any software
component from small CASE tools to an entire Air Traffic Control system?3

What drives the Government’s current bias toward COTS products is the intuitive belief that in
constructing a complex system, there are often some cases where “the item I want already exists
on someone else’s shelf.” In this simplistic sense, it is moot whether that shelf is commercial or
otherwise, and thus there is a significant commonality between a COTS component and a nonde-
velopmental item (NDI), since in both cases the acquiring organization desires to delegate the cre-
ation of certain functionality elsewhere. Whether the source of that functionality is the
commercial world or merely somewhere else in Government is unimportant. In short, the key
issue is the Government’s heightened willingness to consider the classical “make vs. buy” ques-
tion often faced by industry.

But in any sense other than this simple one, there are shades and nuances of meaning that may or
may not be significant for a particular acquisition: these subtly different meanings provide a dan-
gerous level of ambiguity. A precise specification of the intended meaning of the term “COTS” is
manifestly necessary for each acquisition.

2. The Federal Acquisition Regulations (FARS) are currently being amended to reflect the Senate defini-
tions.

3. If so, then a single technical policy is being applied equally and across the board to systems of ten thou-
sand lines and systems of ten million lines; in short, “one size fits all.”



III. Understand the impact of COTS products on the requirements and selection process

There is widespread agreement throughout the software community on the importance of a
requirements specification; anecdotal evidence suggests that the requirements specification can be
the single most important factor in the success of an acquisition. There are, therefore, some obvi-
ous impacts that a COTS bias will have both on the specification of requirements and on the eval-
uation of proposals.

A bias toward COTS software products necessarily implies either that some software require-
ments will be written to describe existing products, or that the requirements are malleable enough
to be implemented with a variety of existing products. Said differently, someone (whether the
requirements author or not) must choose which requirements can bend to the exigencies of the
marketplace and which cannot. Nor is this unrealistic: requirements are not, after all, written in a
vacuum, and for any given component of a software-intensive system, the author of its require-
ments can distinguish absolute from desirable properties of the system. But for those require-
ments thatare expected to be amenable to a commercial solution, then the requirements author
must have some notion of how bidders will respond. For instance, if an acquisition of some CASE
tools includes a project management tool, and the expectation is for a COTS item from most bid-
ders, then the author of its requirements thus must have adequate knowledge of the existing CASE
marketplace, which will then guide the description of required functional features. Anything else
would be self-contradictory: soliciting bids for a commercial product, yet describing functional
capabilities for which no commercial instances exist. Paradoxically, the requirements must also be
sufficiently generic, since unless we assume that the author of the requirements has predecided on
a specific product, the requirements must be broad enough to accommodate the differences
between comparable commercial products.

A COTS bias can also have an impact on the evaluation process. Selection criteria become diffi-
cult to define when choosing between two comparable products such as FrameMaker or Interleaf:
given these choices, what clearly distinguishes them? What aspects of selecting one or the other
will survive a challenge to an award? Another difficulty for source selection stems from the loose-
ness of the term “COTS” described earlier: will each acquisition refine what it means by
“COTS”? Will all acquisitions abide by the Government-wide definition (e.g., the FARs)? Are
there some minimal yearly sales figures by which some component isacceptably COTS? Or
might it be enough that the bidder proposes some arbitrary component and states that it is “com-
mercially available”? Even worse, there have even been suggestions (at least in the presence of the
authors) that the COTS directives might eventually be phrased such that “at least 50% of the bid-
der’s proposal must be COTS.” If so, how is the presence of “50%” determined? Half of all
CSCIs? Half the lines of code (which cannot be determined with COTS products)? Half the
“shall” requirements? Presuming that the 50% figurecould be determined, does it also logically
follow that with all other things being equal, that 65% COTS is de facto preferable to 55%?

IV. Understand the impact of COTS products on the integration process.

The current thrust toward COTS products takes place in the context of “COTS-basedsystems.”
That is, while there are demonstrable benefits in preferring to purchase a standalone Oracle
DBMS rather than creating its functional equivalent from scratch, the current COTS initiatives are
really focused on systems: complex groupings of components, interacting in diverse ways, and in



which introducing commercial components will simultaneously result in lower costs (e.g., due to
lowered maintenance costs for the Government) as well as giving the system a “plug and play”
character (e.g., because of the expected high degree of integrability).

The phrase “plug and play” is significant, and is the unspoken motivator for much of the current
interest in COTS products. It conjures up a software environment wherein heterogeneous compo-
nents can be easily inserted or replaced, and in which components interconnect and interoperate
with ease. It is based on the conditions found in the hardware world, where some degree of “plug
and play” really does exist; boards from one maker, cables from another, printers, monitors, and
keyboards can all be purchased, replaced, and upgraded independently and easily.

In terms of software, this tempting picture is a myth, and will remain a myth for several years.
Software as typically written today shares few of the integrability characteristics of hardware.
There are no widely-observed functional boundaries of a component (i.e., while a keyboard per-
forms a single bounded role in the hardware world, there is no such analog for a design tool).
Even for those software items that do have a relatively clean demarcation of functionality, such as
a database management system, the vendors of such products tend to bundle that functionality
with other capabilities (e.g., a DBMS might provide a GUI builder, 4GL processors, etc.). Thus,
individual products are actually unique collections of tools and utilities whose internal interfaces
are generally obscured. These products are often extremely useful, but are not easily “plugged,”
since different products exhibit or obscure different interfaces, and a fatal mismatch is almost cer-
tain when one product is replaced by another.

The “plug and play” notion also rests on assumptions about data that different tools will share,
again by analogy to the hardware world. Once again, it is necessary to note the nontrivial differ-
ences between the two worlds. For hardware, low-level protocols tend to be semantically simple
(as are agreements on physical things like pin configurations). By contrast, the information that
crosses software interface boundaries is semantically far richer. A data “item” for a graphical
design tool will include many levels of information unique to that tool; its meaning may also
incorporate details of access control, relationships with other data items, ownership, longevity,
and so forth. Vendors of such components tend to keep details like these private (which is a logical
outcome of the decision to incorporate multiple functionalities into a single product). The result is
that until there are wide agreements from many software vendors about shared data, then even if it
is possible to “plug” a new component into a software system, it is not very likely that one will be
able to “play.”

V. Understand the impact of COTS products on the testing process.

It is a truism that testing a system is quite different from testing its constituent parts. This differ-
ence is especially pronounced when the system makes use of previously-existing software compo-
nents. This fact is dramatically demonstrated in the findings of the investigation of the recent
explosion of the European Space Agency’s Ariane-5 rocket, where software from the earlier ver-
sion of the rocket (Ariane-4) was reused:

The error occurred in ... a software module [that] computed meaningful results only before
lift-off. As soon as the launcher lifts off, this function serves no purpose. [The purpose of
this function] is based on a requirement of Ariane-4...

The same requirement does not apply to Ariane 5, which has a different preparation



sequence and it was maintained for commonality reasons, presumably based on the
view that, unless proven necessary, it was not wise to make changes in software which
worked well on Ariane 4.4 (emphasis ours)

We cite this instance because it provides a highly relevant lesson when deciding to use any previ-
ously-written component (which certainly includes COTS components) in a system.What types of
testing, both at the unit level and at the system level, are possible? And what types of testing are
necessary? In the example cited above, there was a requirement that drove the creation of a mod-
ule for the earlier system. The module was reused later, but the requirement overlooked (or, more
likely, forgotten), and thus whatever testing was performed made no provision for it. So when a
system designer today is faced with the choice of using a COTS component, how is he to deter-
mine the testing that will be necessary? What requirements drove the creation of that component?
Are they documented? Are they complete? Even at the sub-system level, how does one do unit
testing for a COTS component?

Current research is only beginning to grapple with these questions; it is vital that we have some
better notions of how they might be answered. Widespread incorporation of COTS components
into systems may not result in failures as spectacular or as costly as that of Ariane-5. But for at
least some systems, similar misunderstanding about requirements will occur, and failures they
will most certainly be.

VI. Realize that a COTS approach makes a system dependent on the COTS vendors

The role of the components’ vendors can be a decisive factor in successfully creating and main-
taining a commercially-based software system. There are several aspects to this, of which we sug-
gest three as especially significant.

First, what standards govern the product in question? In spite of the current interest in the role of
standards for commercial products, there is still the danger of a system becoming overly depen-
dent on a particular vendor’s product. This commonly occurs when a product has a number of
desirable but non-standard features.  Such features are often attractive, but they exact a price,
since a system that relies on them will result in what is commonly called “vendor lock.”

Second, does the vendor supply adequate documentation for the component in question? Some
products offer extensive and useful documentation, but this is by no means normative. (This point
can be easily verified by any system administrator who has tried to follow installation instruc-
tions.) Nor is installation documentation sufficient: do programmer reference manuals or mainte-
nance manuals exist? More to the point: are they well-written? In any case, are they accurate? Nor
is documentation the only issue: what kind of user support is available? Is the company responsive
to user inquiries? If the component is to be used in a critical system, what is the availability of that
support (e.g., is it twenty-four hour support)?

Third, if the component is to be part of a system that will operate for several years, what are the
probabilities that the company will exist for that time? There are many anecdotes throughout the
software community about products’ vendors going out of business leaving clients with nonfunc-
tional tools and unretrievable data: such anecdotes are not entirely legendary. Finally, even assum-

4. “ARIANE 5:Flight 501 Failure.” Report by the Inquiry Board, Prof. J.L. Lyons, Chairman, Paris, 19 July,
1996.



ing that the company exists, how long will it support the COTS product in question? Vendors
often phase out their support for any given product: would such an occurrence have an impact on
the maintenance of the system in question?

These questions are neither new nor profound; to a large extent, they have been relevant in many
acquisitions for years (e.g., questions like these are always in the mind of a buyer of CASE tools).
But they demand reasonable answers, and as they become applicable to more and more parts of a
complex system, the need for those answers grows as well.

VII.Realize that maintenance is not free.

Since much of the motivation for the movement toward COTS-based systems is the expectation of
easier and cheaper system maintenance, we now examine some aspects of how maintenance and
upgrade activities can be affected in a system with numerous commercial components.

First, upgrading a COTS-based software system means that as new releases of the commercial
components are made by the various vendors, the system will incorporate them. Though it is pos-
sible to occasionally skip over a release (e.g., ignore a release of something like “3.03A”), it is
still the case that vendors tend to support only a limited number of versions, and ignoring a ven-
dor’s new releases cannot survive in the long term. It is also preferable that a system’s commercial
components should be as up to date as possible. A system with several commercial components
thus has a very heavy dependency on various release cycles of the COTS vendors.

A further complicating factor is that different pieces of the system will be upgraded at widely
varying intervals; licenses will be invalidated and need to be revalidated for different parts of the
system at random intervals. And it should be kept in mind that component upgrade can result in
numerous unforeseen problems: incompatible files and databases; different naming conventions;
introduction of new conflicts between COTS components; these things are not at all uncommon.
Depending on the number of COTS components and different COTS vendors, the effect of these
multiple dependencies can vary from short-term user inconvenience to total system instability.

Another costly item for maintenance of COTS-based software systems results from the degree to
which those systems exhibit an integrated character. We earlier suggested that the realities of the
software world are quite different from those of the hardware world, and COTS software compo-
nents are seldom built to “plug” into an existing system easily. The usual way to overcome this
deficiency and build integrated systems that involve heterogeneous COTS software components
involves “wrappers,” “bridges,” or other “glueware.” These terms refer to third-party software that
performs whatever integrating functions are necessary: trapping output from one component and
reformatting it for input to another, sending notification messages about one tool’s completion to
another for start-up, and so forth. Most heterogeneous software systems that exhibit “integrated-
ness” are built in precisely this way.

However, this techniqueis notone that leads to lower maintenance costs. First, writing wrappers
can itself be a complex activity, requiring expertise both at the detailed system level as well as in
the COTS components being wrapped. Second, wrappers are often “point-to-point” solutions,
which means that when a vendor releases a new version, any “wrapping” involving the new com-
ponent will potentially need upgrading. Given the random vendor release cycles described above,
then keeping the glueware current and up to date for an integrated system of any complexity can
become a maintenance nightmare.



VIII.You are not absolved of the need to engineer the system well

The discipline of engineering is no less critical to a COTS-based system than any other type of
system; in some particulars it could be even more critical. And the reality of today’s available
COTS products is that few of them are designed to work together. Many have been created to be
used stand-alone, and to require no co-location (let alone interaction) with any other product or
component. Even when they have been designed to cooperate with another product, it is most
often another product from the same vendor or from another vendor with whom the first vendor
shares some special interest.

A COTS-based system is still a system with its own requirements, both developmental and lifecy-
cle. Although the parts might be obtained from commercial sources, no one cares aboutthe system
itselfexcept the person who will pay for it, maintain it, and use it. This system will need to be
designed, brought together, tested, and managed just the same as any other system you have built
or acquired in the past. There are no magic formulae for this. Nor is the Government’s responsi-
bility for its systems eliminated by the new-found reliance on COTS products.

IX. Just “doing COTS” is not an automatic cost-saver

As of yet, there is little real Government experience with building and fielding significant COTS-
based, especially over any significant part of an overall system lifecycle. So we have far more
promises and wishful thinking than facts or verified cost models on which to base our enthusiasm
for the use of COTS products in Government systems.

And what is behind this enthusiasm? At least in part, it is the observation of COTS-based revolu-
tions in other industries (e.g., automobiles). These appear to hold out the hope and expectation
that the use of COTS products will similarly lower software system costs. And the analogy is
compelling, since it makes sense that the proration of development and upgrade costs across mul-
tiple users and competition between suppliers should lead to cost savings for each part of any sys-
tem that derives from the COTS world.

But note that most of this argument is based on per-unit component cost considerations. What
about thesystem costs? For instance, consider the effort to understand the COTS products as a
(potential) system component - a glossy brochure and vendor promises are not enough. And
sometimes all the available documentation together is not enough to understand the full behavior
of a product nor the implications of that behavior for the integration of the component into the
system. Some other hidden costs include:

• market research to find the COTS products that are suitable
• product analyses to select among alternatives
• licenses and warranties, especially if the warranty available to the general public does not suit

your needs

In addition, many of the aspects of COTS-based systems previously cited in this paper can have
still greater costs:

• integration of all those diverse products into a system
• keeping up with the asynchronous upgrades of the various products (this includes re-acquiring

the knowledge needed to be sure each will continue to be a contributing member of the sys-
tem, not to mention individual upgrade costs -- vendors don’t hand out new releases for free!)



• coordination of the host of support vendors during the system lifecycle
• recovery when a vendor discontinues a product or goes out of business altogether

In any given situation, which costs will prevail? The answer is not an automatic result of “doing
COTS,” but instead depends on the individual system and circumstance, the specific risk mitiga-
tion strategies, and the management skills at hand.

X. Just “doing COTS” must be part of a large-scale paradigm shift

In most college curricula today, the introduction to software and computer science still consists of
learning one or more programming languages. This teaches people to write whole systems and
subsystems, designing them from a blank piece of paper, then coding, debugging, and testing
them.

In contrast, the use of existing products as components in a system requires determination of how
to get them to cooperate with one another to achieve the goals of the system. This will often result
in writing wrappers to achieve the desired cooperation and integration. And this will almost cer-
tainly eventuate in repeating these two steps again during maintenance as each product changes
(usually independently) to keep the set of components continuously cooperating

These two paradigms are very different, and the move to the generation of COTS-based systems
constitutes a significant paradigm shift for programmers and system developers. Extrapolating
from that, we find that it also constitutes a significant paradigm shift for the testing, quality assur-
ance, and maintenance personnel as well. And changes to all these positions require changes and
paradigm shifts in managers, in the expectations they have and in the techniques they employ.

In other words, the change to COTS-based systems is not just a technological change. It affects
many people in many roles in profound ways. Further, such changes for individuals are only the
start of the change. Organizations can be equally impacted, experiencing changes in the activities
they undertake, their structure and their relationships, required training, the corporate policies, the
relationships between government and contractors, and relationships across the marketplace.

This paradigm shift toward integration of others’ products, from a producer to a consumer mental-
ity, has widespread effects. The worst thing one can do is to treat it as merely as a change in tech-
nology.

3. Afterthought

Much has been made, and will continue to be made, of “the software crisis.” It periodically reas-
serts a presence in the Government’s consciousness, and its symptoms -- spiraling software costs,
growing system complexity -- are indeed valid causes of concern. But perhaps this phenomenon is
less a “crisis” than is generally thought. Perhaps it is simply the case that the growth of software’s
cost and complexity is (at least partially) the natural result of the engineering decisions being
made. That is, given that a greater and greater proportion of a system’s functionality is being allo-
cated to software, while at the same time the system’s functional capabilities are themselves
increasing, then it is inescapable that the cost and complexity of the software will proportionately



grow as well. This is the natural result of a massive reallocation of system behavior from one area
to another. That this reallocation engenders a “crisis” is too often caused less by the software itself
than by keysystem decisions being made without proper understanding of the constraints and lim-
itations of software, or without appropriate input from software (as opposed to system or hard-
ware) experts.

There is another factor that relates to this impending “crisis,” namely, the belief that more com-
plex systems can be had for less cost. While it is sometimes the case, certainly with computer
hardware, that capability grows as cost diminishes, it is doubtful that this is always a reasonable
expectation. In the case of software, it flies in the face of numerous bitter experiences, and in the
face of simple folk wisdom as well (“you get what you pay for”). Thus, while such slogans as
“better, cheaper, faster” represent attractive ideals, it is naive in the extreme to believe that simply
stating the slogan will make it come true. A more realistic goal should be to demand awareness,
on the part of all high- and middle-level personnel, of the pragmatic realities of software-intensive
systems. Thus, it is not reasonable to speak of buying “fully integrated CASE environments”
when there is no agreement among environment experts even as to what the phrase “fully inte-
grated” actually means. It is not reasonable to expect “completely interoperating software sys-
tems” to appear on demand when in spite of recent advances in gluing disparate systems together,
it is still the case that Apple users and Sun users find themselves at an impasse when trying to
share a word processor file. And it is not reasonable for the Government to continue the cycle of
large-scale procurements, initiatives, thrusts, plans, or whatever else (most of which have con-
sumed many precious dollars and provided precious little benefit) without a more solid grounding
in the technical realities of software practice.

This grounding must be based on knowledge, not slogans. It is all well and good to hope that
using commercial software components will save money in the long run: as we stated on the first
page of this paper, we fully concur with the ideal of using COTS products when appropriate and
when warranted. But the savings will not come automatically, and they will not be the result of
applying a simplistic solution to a complex problem. Anyone who promises otherwise is offering
us a Golden Calf to worship. Following that path didn’t work in years gone by. It is not likely that
it will work today.


	1. Introduction
	2. The Commandments
	I. One more time: Do not believe in Silver Bullets.
	II. Use the term precisely (and demand like behavior from others)
	III. Understand the impact of COTS products on the requirements and selection process
	IV. Understand the impact of COTS products on the integration process.
	V. Understand the impact of COTS products on the testing process.
	VI. Realize that a COTS approach makes a system dependent on the COTS vendors
	VII.Realize that maintenance is not free.
	VIII.You are not absolved of the need to engineer the system well
	IX. Just “doing COTS” is not an automatic cost-saver
	X. Just “doing COTS” must be part of a large-scale paradigm shift

	3. Afterthought

